
The GNU Binary Utilities
Version 2.2

May 1993

Roland H. Pesch
Jeffrey M. Osier
Cygnus Support

Cygnus Support
TEXinfo 2021-02-20.11

Copyright c© 1991, 1992, 1993, 1994 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

1

1 ar

ar [-]p[mod [relpos]] archive [member...]

ar -M [<mri-script]

The GNU ar program creates, modifies, and extracts from archives. An archive is a
single file holding a collection of other files in a structure that makes it possible to retrieve
the original individual files (called members of the archive).

The original files’ contents, mode (permissions), timestamp, owner, and group are pre-
served in the archive, and can be restored on extraction.

GNU ar can maintain archives whose members have names of any length; however,
depending on how ar is configured on your system, a limit on member-name length may be
imposed for compatibility with archive formats maintained with other tools. If it exists, the
limit is often 15 characters (typical of formats related to a.out) or 16 characters (typical of
formats related to coff).

ar is considered a binary utility because archives of this sort are most often used as
libraries holding commonly needed subroutines.

ar creates an index to the symbols defined in relocatable object modules in the archive
when you specify the modifier ‘s’. Once created, this index is updated in the archive
whenever ar makes a change to its contents (save for the ‘q’ update operation). An archive
with such an index speeds up linking to the library, and allows routines in the library to
call each other without regard to their placement in the archive.

You may use ‘nm -s’ or ‘nm --print-armap’ to list this index table. If an archive lacks
the table, another form of ar called ranlib can be used to add just the table.

GNU ar is designed to be compatible with two different facilities. You can control its
activity using command-line options, like the different varieties of ar on Unix systems; or,
if you specify the single command-line option ‘-M’, you can control it with a script supplied
via standard input, like the MRI “librarian” program.

2 GNU Binary Utilities

1.1 Controlling ar on the command line
ar [-]p[mod [relpos]] archive [member...]

When you use ar in the Unix style, ar insists on at least two arguments to execute: one
keyletter specifying the operation (optionally accompanied by other keyletters specifying
modifiers), and the archive name to act on.

Most operations can also accept further member arguments, specifying particular files
to operate on.

GNU ar allows you to mix the operation code p and modifier flags mod in any order,
within the first command-line argument.

If you wish, you may begin the first command-line argument with a dash.

The p keyletter specifies what operation to execute; it may be any of the following, but
you must specify only one of them:

d Delete modules from the archive. Specify the names of modules to be deleted
as member . . . ; the archive is untouched if you specify no files to delete.

If you specify the ‘v’ modifier, ar lists each module as it is deleted.

m Use this operation to move members in an archive.

The ordering of members in an archive can make a difference in how programs
are linked using the library, if a symbol is defined in more than one member.

If no modifiers are used with m, any members you name in the member ar-
guments are moved to the end of the archive; you can use the ‘a’, ‘b’, or ‘i’
modifiers to move them to a specified place instead.

p Print the specified members of the archive, to the standard output file. If the
‘v’ modifier is specified, show the member name before copying its contents to
standard output.

If you specify no member arguments, all the files in the archive are printed.

q Quick append ; add the files member . . . to the end of archive, without checking
for replacement.

The modifiers ‘a’, ‘b’, and ‘i’ do not affect this operation; new members are
always placed at the end of the archive.

The modifier ‘v’ makes ar list each file as it is appended.

Since the point of this operation is speed, the archive’s symbol table index is
not updated, even if it already existed; you can use ‘ar s’ or ranlib explicitly
to update the symbol table index.

r Insert the files member . . . into archive (with replacement). This operation
differs from ‘q’ in that any previously existing members are deleted if their
names match those being added.

If one of the files named in member . . . does not exist, ar displays an error
message, and leaves undisturbed any existing members of the archive matching
that name.

By default, new members are added at the end of the file; but you may use one
of the modifiers ‘a’, ‘b’, or ‘i’ to request placement relative to some existing
member.

Chapter 1: ar 3

The modifier ‘v’ used with this operation elicits a line of output for each file
inserted, along with one of the letters ‘a’ or ‘r’ to indicate whether the file was
appended (no old member deleted) or replaced.

t Display a table listing the contents of archive, or those of the files listed in
member . . . that are present in the archive. Normally only the member name
is shown; if you also want to see the modes (permissions), timestamp, owner,
group, and size, you can request that by also specifying the ‘v’ modifier.

If you do not specify a member, all files in the archive are listed.

If there is more than one file with the same name (say, ‘fie’) in an archive (say
‘b.a’), ‘ar t b.a fie’ lists only the first instance; to see them all, you must ask
for a complete listing—in our example, ‘ar t b.a’.

x Extract members (named member) from the archive. You can use the ‘v’ mod-
ifier with this operation, to request that ar list each name as it extracts it.

If you do not specify a member, all files in the archive are extracted.

A number of modifiers (mod) may immediately follow the p keyletter, to specify varia-
tions on an operation’s behavior:

a Add new files after an existing member of the archive. If you use the modifier
‘a’, the name of an existing archive member must be present as the relpos
argument, before the archive specification.

b Add new files before an existing member of the archive. If you use the modifier
‘b’, the name of an existing archive member must be present as the relpos
argument, before the archive specification. (same as ‘i’).

c Create the archive. The specified archive is always created if it did not exist,
when you request an update. But a warning is issued unless you specify in
advance that you expect to create it, by using this modifier.

i Insert new files before an existing member of the archive. If you use the modifier
‘i’, the name of an existing archive member must be present as the relpos
argument, before the archive specification. (same as ‘b’).

l This modifier is accepted but not used.

o Preserve the original dates of members when extracting them. If you do not
specify this modifier, files extracted from the archive are stamped with the time
of extraction.

s Write an object-file index into the archive, or update an existing one, even if no
other change is made to the archive. You may use this modifier flag either with
any operation, or alone. Running ‘ar s’ on an archive is equivalent to running
‘ranlib’ on it.

u Normally, ‘ar r’. . . inserts all files listed into the archive. If you would like
to insert only those of the files you list that are newer than existing members
of the same names, use this modifier. The ‘u’ modifier is allowed only for the
operation ‘r’ (replace). In particular, the combination ‘qu’ is not allowed, since
checking the timestamps would lose any speed advantage from the operation
‘q’.

4 GNU Binary Utilities

v This modifier requests the verbose version of an operation. Many operations
display additional information, such as filenames processed, when the modifier
‘v’ is appended.

V This modifier shows the version number of ar.

1.2 Controlling ar with a script
ar -M [<script]

If you use the single command-line option ‘-M’ with ar, you can control its operation
with a rudimentary command language. This form of ar operates interactively if standard
input is coming directly from a terminal. During interactive use, ar prompts for input (the
prompt is ‘AR >’), and continues executing even after errors. If you redirect standard input
to a script file, no prompts are issued, and ar abandons execution (with a nonzero exit
code) on any error.

The ar command language is not designed to be equivalent to the command-line options;
in fact, it provides somewhat less control over archives. The only purpose of the command
language is to ease the transition to GNU ar for developers who already have scripts written
for the MRI “librarian” program.

The syntax for the ar command language is straightforward:

• commands are recognized in upper or lower case; for example, LIST is the same as
list. In the following descriptions, commands are shown in upper case for clarity.

• a single command may appear on each line; it is the first word on the line.

• empty lines are allowed, and have no effect.

• comments are allowed; text after either of the characters ‘*’ or ‘;’ is ignored.

• Whenever you use a list of names as part of the argument to an ar command, you can
separate the individual names with either commas or blanks. Commas are shown in
the explanations below, for clarity.

• ‘+’ is used as a line continuation character; if ‘+’ appears at the end of a line, the text
on the following line is considered part of the current command.

Here are the commands you can use in ar scripts, or when using ar interactively. Three
of them have special significance:

OPEN or CREATE specify a current archive, which is a temporary file required for most of
the other commands.

SAVE commits the changes so far specified by the script. Prior to SAVE, commands affect
only the temporary copy of the current archive.

ADDLIB archive

ADDLIB archive (module, module, ... module)

Add all the contents of archive (or, if specified, each named module from
archive) to the current archive.

Requires prior use of OPEN or CREATE.

ADDMOD member, member, ... member

Add each named member as a module in the current archive.

Requires prior use of OPEN or CREATE.

Chapter 1: ar 5

CLEAR Discard the contents of the current archive, cancelling the effect of any opera-
tions since the last SAVE. May be executed (with no effect) even if no current
archive is specified.

CREATE archive

Creates an archive, and makes it the current archive (required for many other
commands). The new archive is created with a temporary name; it is not actu-
ally saved as archive until you use SAVE. You can overwrite existing archives;
similarly, the contents of any existing file named archive will not be destroyed
until SAVE.

DELETE module, module, ... module

Delete each listed module from the current archive; equivalent to ‘ar -d

archive module ... module’.

Requires prior use of OPEN or CREATE.

DIRECTORY archive (module, ... module)

DIRECTORY archive (module, ... module) outputfile

List each named module present in archive. The separate command VERBOSE

specifies the form of the output: when verbose output is off, output is like that
of ‘ar -t archive module...’. When verbose output is on, the listing is like
‘ar -tv archive module...’.

Output normally goes to the standard output stream; however, if you specify
outputfile as a final argument, ar directs the output to that file.

END Exit from ar, with a 0 exit code to indicate successful completion. This com-
mand does not save the output file; if you have changed the current archive
since the last SAVE command, those changes are lost.

EXTRACT module, module, ... module

Extract each named module from the current archive, writing them into the
current directory as separate files. Equivalent to ‘ar -x archive module...’.

Requires prior use of OPEN or CREATE.

LIST Display full contents of the current archive, in “verbose” style regardless of the
state of VERBOSE. The effect is like ‘ar tv archive’). (This single command is
a GNU ld enhancement, rather than present for MRI compatibility.)

Requires prior use of OPEN or CREATE.

OPEN archive

Opens an existing archive for use as the current archive (required for many
other commands). Any changes as the result of subsequent commands will not
actually affect archive until you next use SAVE.

REPLACE module, module, ... module

In the current archive, replace each existing module (named in the REPLACE ar-
guments) from files in the current working directory. To execute this command
without errors, both the file, and the module in the current archive, must exist.

Requires prior use of OPEN or CREATE.

VERBOSE Toggle an internal flag governing the output from DIRECTORY. When the flag
is on, DIRECTORY output matches output from ‘ar -tv ’. . . .

6 GNU Binary Utilities

SAVE Commit your changes to the current archive, and actually save it as a file with
the name specified in the last CREATE or OPEN command.

Requires prior use of OPEN or CREATE.

7

2 ld

The GNU linker ld is now described in a separate manual. See Section “Overview” in Using
LD: the GNU linker.

9

3 nm
nm [-a | --debug-syms] [-g | --extern-only]

[-B] [-C | --demangle] [-D | --dynamic]

[-s | --print-armap] [-A | -o | --print-file-name]

[-n | -v | --numeric-sort] [-p | --no-sort]

[-r | --reverse-sort] [--size-sort] [-u | --undefined-only]

[-t radix | --radix=radix] [-P | --portability]

[--target=bfdname] [-f format | --format=format]

[--no-demangle] [-V | --version] [--help] [objfile...]

GNU nm lists the symbols from object files objfile If no object files are listed as
arguments, nm assumes a.out.

For each symbol, nm shows:

• The symbol value, in the radix selected by options (see below), or hexadecimal by
default.

• The symbol type. At least the following types are used; others are, as well, depending
on the object file format. If lowercase, the symbol is local; if uppercase, the symbol is
global (external).

A Absolute.

B BSS (uninitialized data).

C Common.

D Initialized data.

I Indirect reference.

T Text (program code).

U Undefined.

• The symbol name.

The long and short forms of options, shown here as alternatives, are equivalent.

-A

-o

--print-file-name

Precede each symbol by the name of the input file (or archive element) in which
it was found, rather than identifying the input file once only, before all of its
symbols.

-a

--debug-syms

Display all symbols, even debugger-only symbols; normally these are not listed.

-B The same as ‘--format=bsd’ (for compatibility with the MIPS nm).

-C

--demangle

Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. See Chapter 10 [c++filt], page 27, for more information
on demangling.

10 GNU Binary Utilities

--no-demangle

Do not demangle low-level symbol names. This is the default.

-D

--dynamic

Display the dynamic symbols rather than the normal symbols. This is only
meaningful for dynamic objects, such as certain types of shared libraries.

-f format

--format=format

Use the output format format, which can be bsd, sysv, or posix. The default
is bsd. Only the first character of format is significant; it can be either upper
or lower case.

-g

--extern-only

Display only external symbols.

-n

-v

--numeric-sort

Sort symbols numerically by their addresses, rather than alphabetically by their
names.

-p

--no-sort

Do not bother to sort the symbols in any order; print them in the order en-
countered.

-P

--portability

Use the POSIX.2 standard output format instead of the default format. Equiv-
alent to ‘-f posix’.

-s

--print-armap

When listing symbols from archive members, include the index: a mapping
(stored in the archive by ar or ranlib) of which modules contain definitions
for which names.

-r

--reverse-sort

Reverse the order of the sort (whether numeric or alphabetic); let the last come
first.

--size-sort

Sort symbols by size. The size is computed as the difference between the value
of the symbol and the value of the symbol with the next higher value. The size
of the symbol is printed, rather than the value.

Chapter 3: nm 11

-t radix

--radix=radix

Use radix as the radix for printing the symbol values. It must be ‘d’ for decimal,
‘o’ for octal, or ‘x’ for hexadecimal.

--target=bfdname

Specify an object code format other than your system’s default format. See
Section 12.1 [Target Selection], page 31, for more information.

-u

--undefined-only

Display only undefined symbols (those external to each object file).

-V

--version

Show the version number of nm and exit.

--help Show a summary of the options to nm and exit.

13

4 objcopy

objcopy [-F bfdname | --target=bfdname]

[-I bfdname | --input-target=bfdname]

[-O bfdname | --output-target=bfdname]

[-S | --strip-all] [-g | --strip-debug]

[-x | --discard-all] [-X | --discard-locals]

[-b byte | --byte=byte]

[-i interleave | --interleave=interleave]

[-R sectionname | --remove-section=sectionname]

[-v | --verbose] [-V | --version] [--help]

infile [outfile]

The gnu objcopy utility copies the contents of an object file to another. objcopy uses
the gnu bfd Library to read and write the object files. It can write the destination object
file in a format different from that of the source object file. The exact behavior of objcopy
is controlled by command-line options.

objcopy creates temporary files to do its translations and deletes them afterward.
objcopy uses bfd to do all its translation work; it has access to all the formats described
in bfd and thus is able to recognize most formats without being told explicitly. See Section
“BFD” in Using LD.

infile

outfile The source and output files, respectively. If you do not specify outfile, objcopy
creates a temporary file and destructively renames the result with the name of
infile.

-I bfdname

--input-target=bfdname

Consider the source file’s object format to be bfdname, rather than attempting
to deduce it. See Section 12.1 [Target Selection], page 31, for more information.

-O bfdname

--output-target=bfdname

Write the output file using the object format bfdname. See Section 12.1 [Target
Selection], page 31, for more information.

-F bfdname

--target=bfdname

Use bfdname as the object format for both the input and the output file;
i.e., simply transfer data from source to destination with no translation. See
Section 12.1 [Target Selection], page 31, for more information.

-R sectionname

--remove-section=sectionname

Remove any section named sectionname from the output file. This option may
be given more than once. Note that using this option inappropriately may make
the output file unusable.

-S

--strip-all

Do not copy relocation and symbol information from the source file.

14 GNU Binary Utilities

-g

--strip-debug

Do not copy debugging symbols from the source file.

-x

--discard-all

Do not copy non-global symbols from the source file.

-X

--discard-locals

Do not copy compiler-generated local symbols. (These usually start with ‘L’ or
‘.’.)

-b byte

--byte=byte

Keep only every byteth byte of the input file (header data is not affected). byte
can be in the range from 0 to interleave-1, where interleave is given by the ‘-i’
or ‘--interleave’ option, or the default of 4. This option is useful for creating
files to program rom. It is typically used with an srec output target.

-i interleave

--interleave=interleave

Only copy one out of every interleave bytes. Select which byte to copy with the
-b or ‘--byte’ option. The default is 4. objcopy ignores this option if you do
not specify either ‘-b’ or ‘--byte’.

-V

--version

Show the version number of objcopy.

-v

--verbose

Verbose output: list all object files modified. In the case of archives, ‘objcopy
-V’ lists all members of the archive.

--help Show a summary of the options to objcopy.

15

5 objdump

objdump [-a | --archive-headers]

[-b bfdname | --target=bfdname]

[-d | --disassemble] [-D | --disassemble-all]

[-f | --file-headers]

[-h | --section-headers | --headers] [-i | --info]

[-j section | --section=section]

[-l | --line-numbers]

[-m machine | --architecture=machine]

[-r | --reloc] [-R | --dynamic-reloc]

[-s | --full-contents] [--stabs]

[-t | --syms] [-T | --dynamic-syms] [-x | --all-headers]

[--version] [--help] objfile...

objdump displays information about one or more object files. The options control what
particular information to display. This information is mostly useful to programmers who are
working on the compilation tools, as opposed to programmers who just want their program
to compile and work.

objfile . . . are the object files to be examined. When you specify archives, objdump shows
information on each of the member object files.

The long and short forms of options, shown here as alternatives, are equivalent. At least
one option besides ‘-l’ must be given.

-a

--archive-header

If any of the objfile files are archives, display the archive header information
(in a format similar to ‘ls -l’). Besides the information you could list with ‘ar
tv’, ‘objdump -a’ shows the object file format of each archive member.

-b bfdname

--target=bfdname

Specify that the object-code format for the object files is bfdname. This option
may not be necessary; objdump can automatically recognize many formats.

For example,

objdump -b oasys -m vax -h fu.o

displays summary information from the section headers (‘-h’) of fu.o, which
is explicitly identified (‘-m’) as a VAX object file in the format produced by
Oasys compilers. You can list the formats available with the ‘-i’ option. See
Section 12.1 [Target Selection], page 31, for more information.

-d

--disassemble

Display the assembler mnemonics for the machine instructions from objfile.
This option only disassembles those sections which are expected to contain
instructions.

-D

--disassemble-all

Like ‘-d’, but disassemble the contents of all sections, not just those expected
to contain instructions.

16 GNU Binary Utilities

-f

--file-header

Display summary information from the overall header of each of the objfile files.

-h

--section-header

--header Display summary information from the section headers of the object file.

File segments may be relocated to nonstandard addresses, for example by using
the ‘-Ttext’, ‘-Tdata’, or ‘-Tbss’ options to ld. However, some object file
formats, such as a.out, do not store the starting address of the file segments.
In those situations, although ld relocates the sections correctly, using ‘objdump
-h’ to list the file section headers cannot show the correct addresses. Instead,
it shows the usual addresses, which are implicit for the target.

--help Print a summary of the options to objdump and exit.

-i

--info Display a list showing all architectures and object formats available for specifi-
cation with ‘-b’ or ‘-m’.

-j name

--section=name

Display information only for section name.

-l

--line-numbers

Label the display (using debugging information) with the filename and source
line numbers corresponding to the object code shown. Only useful with ‘-d’ or
‘-D’.

-m machine

--architecture=machine

Specify that the object files objfile are for architecture machine. You can list
available architectures using the ‘-i’ option.

-r

--reloc Print the relocation entries of the file. If used with ‘-d’ or ‘-D’, the relocations
are printed interspersed with the disassembly.

-R

--dynamic-reloc

Print the dynamic relocation entries of the file. This is only meaningful for
dynamic objects, such as certain types of shared libraries.

-s

--full-contents

Display the full contents of any sections requested.

--stabs Display the full contents of any sections requested. Display the contents of the
.stab and .stab.index and .stab.excl sections from an ELF file. This is only
useful on systems (such as Solaris 2.0) in which .stab debugging symbol-table
entries are carried in an ELF section. In most other file formats, debugging

Chapter 5: objdump 17

symbol-table entries are interleaved with linkage symbols, and are visible in the
‘--syms’ output.

-t

--syms Print the symbol table entries of the file. This is similar to the information
provided by the ‘nm’ program.

-T

--dynamic-syms

Print the dynamic symbol table entries of the file. This is only meaningful for
dynamic objects, such as certain types of shared libraries. This is similar to the
information provided by the ‘nm’ program when given the ‘-D’ (‘--dynamic’)
option.

--version

Print the version number of objdump and exit.

-x

--all-header

Display all available header information, including the symbol table and relo-
cation entries. Using ‘-x’ is equivalent to specifying all of ‘-a -f -h -r -t’.

19

6 ranlib

ranlib [-vV] archive

ranlib generates an index to the contents of an archive and stores it in the archive. The
index lists each symbol defined by a member of an archive that is a relocatable object file.

You may use ‘nm -s’ or ‘nm --print-armap’ to list this index.

An archive with such an index speeds up linking to the library and allows routines in
the library to call each other without regard to their placement in the archive.

The GNU ranlib program is another form of GNU ar; running ranlib is completely
equivalent to executing ‘ar -s’. See Chapter 1 [ar], page 1.

-v

-V Show the version number of ranlib.

21

7 size

size [-A | -B | --format=compatibility]

[--help] [-d | -o | -x | --radix=number]

[--target=bfdname] [-V | --version]

objfile...

The GNU size utility lists the section sizes—and the total size—for each of the object
or archive files objfile in its argument list. By default, one line of output is generated for
each object file or each module in an archive.

objfile . . . are the object files to be examined.

The command line options have the following meanings:

-A

-B

--format=compatibility

Using one of these options, you can choose whether the output from GNU
size resembles output from System V size (using ‘-A’, or ‘--format=sysv’),
or Berkeley size (using ‘-B’, or ‘--format=berkeley’). The default is the
one-line format similar to Berkeley’s.

Here is an example of the Berkeley (default) format of output from size:

size --format=Berkeley ranlib size

text data bss dec hex filename

294880 81920 11592 388392 5ed28 ranlib

294880 81920 11888 388688 5ee50 size

This is the same data, but displayed closer to System V conventions:

size --format=SysV ranlib size

ranlib :

section size addr

.text 294880 8192

.data 81920 303104

.bss 11592 385024

Total 388392

size :

section size addr

.text 294880 8192

.data 81920 303104

.bss 11888 385024

Total 388688

--help Show a summary of acceptable arguments and options.

-d

-o

-x

--radix=number

Using one of these options, you can control whether the size of each section is
given in decimal (‘-d’, or ‘--radix=10’); octal (‘-o’, or ‘--radix=8’); or hex-
adecimal (‘-x’, or ‘--radix=16’). In ‘--radix=number’, only the three values
(8, 10, 16) are supported. The total size is always given in two radices; decimal

22 GNU Binary Utilities

and hexadecimal for ‘-d’ or ‘-x’ output, or octal and hexadecimal if you’re using
‘-o’.

--target=bfdname

Specify that the object-code format for objfile is bfdname. This option may not
be necessary; size can automatically recognize many formats. See Section 12.1
[Target Selection], page 31, for more information.

-V

--version

Display the version number of size.

23

8 strings

strings [-afov] [-min-len] [-n min-len] [-t radix] [-]

[--all] [--print-file-name] [--bytes=min-len]

[--radix=radix] [--target=bfdname]

[--help] [--version] file...

For each file given, GNU strings prints the printable character sequences that are at
least 4 characters long (or the number given with the options below) and are followed by a
NUL or newline character. By default, it only prints the strings from the initialized data
sections of object files; for other types of files, it prints the strings from the whole file.

strings is mainly useful for determining the contents of non-text files.

-a

--all

- Do not scan only the initialized data section of object files; scan the whole files.

-f

--print-file-name

Print the name of the file before each string.

--help Print a summary of the program usage on the standard output and exit.
-min-len

-n min-len

--bytes=min-len

Print sequences of characters that are at least min-len characters long, instead
of the default 4.

-o Like ‘-t o’. Some other versions of strings have ‘-o’ act like ‘-t d’ instead.
Since we can not be compatible with both ways, we simply chose one.

-t radix

--radix=radix

Print the offset within the file before each string. The single character argument
specifies the radix of the offset—‘o’ for octal, ‘x’ for hexadecimal, or ‘d’ for
decimal.

--target=bfdname

Specify an object code format other than your system’s default format. See
Section 12.1 [Target Selection], page 31, for more information.

-v

--version

Print the program version number on the standard output and exit.

25

9 strip

strip [-F bfdname | --target=bfdname | --target=bfdname]

[-I bfdname | --input-target=bfdname]

[-O bfdname | --output-target=bfdname]

[-s | --strip-all] [-S | -g | --strip-debug]

[-x | --discard-all] [-X | --discard-locals]

[-R sectionname | --remove-section=sectionname]

[-v | --verbose] [-V | --version] [--help]

objfile...

GNU strip discards all symbols from object files objfile. The list of object files may
include archives. At least one object file must be given.

strip modifies the files named in its argument, rather than writing modified copies
under different names.

-F bfdname

--target=bfdname

Treat the original objfile as a file with the object code format bfdname, and
rewrite it in the same format. See Section 12.1 [Target Selection], page 31, for
more information.

--help Show a summary of the options to strip and exit.

-I bfdname

--input-target=bfdname

Treat the original objfile as a file with the object code format bfdname. See
Section 12.1 [Target Selection], page 31, for more information.

-O bfdname

--output-target=bfdname

Replace objfile with a file in the output format bfdname. See Section 12.1
[Target Selection], page 31, for more information.

-R sectionname

--remove-section=sectionname

Remove any section named sectionname from the output file. This option may
be given more than once. Note that using this option inappropriately may make
the output file unusable.

-s

--strip-all

Remove all symbols.

-g

-S

--strip-debug

Remove debugging symbols only.

-x

--discard-all

Remove non-global symbols.

26 GNU Binary Utilities

-X

--discard-locals

Remove compiler-generated local symbols. (These usually start with ‘L’ or ‘.’.)

-V

--version

Show the version number for strip.

-v

--verbose

Verbose output: list all object files modified. In the case of archives, ‘strip
-v’ lists all members of the archive.

27

10 c++filt

c++filt [-_ | --strip-underscores]

[-n | --no-strip-underscores]

[-s format | --format=format]

[--help] [--version] [symbol...]

The C++ language provides function overloading, which means that you can write many
functions with the same name (providing each takes parameters of different types). All
C++ function names are encoded into a low-level assembly label (this process is known as
mangling). The c++filt program does the inverse mapping: it decodes (demangles) low-
level names into user-level names so that the linker can keep these overloaded functions
from clashing.

Every alphanumeric word (consisting of letters, digits, underscores, dollars, or periods)
seen in the input is a potential label. If the label decodes into a C++ name, the C++ name
replaces the low-level name in the output.

You can use c++filt to decipher individual symbols:

c++filt symbol

If no symbol arguments are given, c++filt reads symbol names from the standard
input and writes the demangled names to the standard output. All results are printed on
the standard output.

-_

--strip-underscores

On some systems, both the C and C++ compilers put an underscore in front
of every name. For example, the C name foo gets the low-level name _foo.
This option removes the initial underscore. Whether c++filt removes the
underscore by default is target dependent.

-n

--no-strip-underscores

Do not remove the initial underscore.

-s format

--format=format

GNU nm can decode three different methods of mangling, used by different C++
compilers. The argument to this option selects which method it uses:

gnu the one used by the GNU compiler (the default method)

lucid the one used by the Lucid compiler

arm the one specified by the C++ Annotated Reference Manual

--help Print a summary of the options to c++filt and exit.

--version

Print the version number of c++filt and exit.

Warning: c++filt is a new utility, and the details of its user interface are
subject to change in future releases. In particular, a command-line option may

28 GNU Binary Utilities

be required in the the future to decode a name passed as an argument on the
command line; in other words,

c++filt symbol

may in a future release become

c++filt option symbol

29

11 nlmconv

nlmconv converts a relocatable object file into a NetWare Loadable Module.

Warning: nlmconv is not always built as part of the binary utilities, since it is
only useful for NLM targets.

nlmconv [-I bfdname | --input-target=bfdname]

[-O bfdname | --output-target=bfdname]

[-T headerfile | --header-file=headerfile]

[-d | --debug] [-l linker | --linker=linker]

[-h | --help] [-V | --version]

infile outfile

nlmconv converts the relocatable ‘i386’ object file infile into the NetWare Loadable
Module outfile, optionally reading headerfile for NLM header information. For instructions
on writing the NLM command file language used in header files, see the ‘linkers’ section,
‘NLMLINK’ in particular, of the NLM Development and Tools Overview, which is part of the
NLM Software Developer’s Kit (“NLM SDK”), available from Novell, Inc. nlmconv uses
the gnu Binary File Descriptor library to read infile; see Section “BFD” in Using LD, for
more information.

nlmconv can perform a link step. In other words, you can list more than one object file
for input if you list them in the definitions file (rather than simply specifying one input file
on the command line). In this case, nlmconv calls the linker for you.

-I bfdname

--input-target=bfdname

Object format of the input file. nlmconv can usually determine the format of
a given file (so no default is necessary). See Section 12.1 [Target Selection],
page 31, for more information.

-O bfdname

--output-target=bfdname

Object format of the output file. nlmconv infers the output format based on
the input format, e.g. for a ‘i386’ input file the output format is ‘nlm32-i386’.
See Section 12.1 [Target Selection], page 31, for more information.

-T headerfile

--header-file=headerfile

Reads headerfile for NLM header information. For instructions on writing the
NLM command file language used in header files, see see the ‘linkers’ sec-
tion, of the NLM Development and Tools Overview, which is part of the NLM
Software Developer’s Kit, available from Novell, Inc.

-d

--debug Displays (on standard error) the linker command line used by nlmconv.

-l linker

--linker=linker

Use linker for any linking. linker can be an abosolute or a relative pathname.

-h

--help Prints a usage summary.

30 GNU Binary Utilities

-V

--version

Prints the version number for nlmconv.

31

12 Selecting the target system

You can specify three aspects of the target system to the gnu binary file utilities, each in
several ways:

• the target

• the architecture

• the linker emulation (which applies to the linker only)

In the following summaries, the lists of ways to specify values are in order of decreasing
precedence. The ways listed first override those listed later.

The commands to list valid values only list the values for which the programs you
are running were configured. If they were configured with ‘--with-targets=all’, the
commands list most of the available values, but a few are left out; not all targets can be
configured in at once because some of them can only be configured native (on hosts with
the same type as the target system).

12.1 Target Selection

A target is an object file format. A given target may be supported for multiple architec-
tures (see Section 12.2 [Architecture Selection], page 32). A target selection may also have
variations for different operating systems or architectures.

The command to list valid target values is ‘objdump -i’ (the first column of output
contains the relevant information).

Some sample values are: ‘a.out-hp300bsd’, ‘ecoff-littlemips’, ‘a.out-sunos-big’.

objdump Target

Ways to specify:

1. command line option: ‘-b’ or ‘--target’

2. environment variable GNUTARGET

3. deduced from the input file

objcopy and strip Input Target

Ways to specify:

1. command line options: ‘-I’ or ‘--input-target’, or ‘-F’ or ‘--target’

2. environment variable GNUTARGET

3. deduced from the input file

objcopy and strip Output Target

Ways to specify:

1. command line options: ‘-O’ or ‘--output-target’, or ‘-F’ or ‘--target’

2. the input target (see “objcopy and strip Input Target” above)

3. environment variable GNUTARGET

4. deduced from the input file

32 GNU Binary Utilities

nm, size, and strings Target

Ways to specify:

1. command line option: ‘--target’

2. environment variable GNUTARGET

3. deduced from the input file

Linker Input Target

Ways to specify:

1. command line option: ‘-b’ or ‘--format’ (see Section “Options” in Using LD)

2. script command TARGET (see Section “Option Commands” in Using LD)

3. environment variable GNUTARGET (see Section “Environment” in Using LD)

4. the default target of the selected linker emulation (see Section 12.3 [Linker Emulation
Selection], page 33)

Linker Output Target

Ways to specify:

1. command line option: ‘-oformat’ (see Section “Options” in Using LD)

2. script command OUTPUT_FORMAT (see Section “Option Commands” in Using LD)

3. the linker input target (see “Linker Input Target” above)

12.2 Architecture selection

An architecture is a type of cpu on which an object file is to run. Its name may contain a
colon, separating the name of the processor family from the name of the particular cpu.

The command to list valid architecture values is ‘objdump -i’ (the second column con-
tains the relevant information).

Sample values: ‘m68k:68020’, ‘mips:3000’, ‘sparc’.

objdump Architecture

Ways to specify:

1. command line option: ‘-m’ or ‘--architecture’

2. deduced from the input file

objcopy, nm, size, strings Architecture

Ways to specify:

1. deduced from the input file

Linker Input Architecture

Ways to specify:

1. deduced from the input file

Chapter 12: Selecting the target system 33

Linker Output Architecture

Ways to specify:

1. script command OUTPUT_ARCH (see Section “Option Commands” in Using LD)

2. the default architecture from the linker output target (see Section 12.1 [Target Selec-
tion], page 31)

12.3 Linker emulation selection

A linker emulation is a “personality” of the linker, which gives the linker default values for
the other aspects of the target system. In particular, it consists of

• the linker script

• the target

• several “hook” functions that are run at certain stages of the linking process to do
special things that some targets require

The command to list valid linker emulation values is ‘ld -V’.

Sample values: ‘hp300bsd’, ‘mipslit’, ‘sun4’.

Ways to specify:

1. command line option: ‘-m’ (see Section “Options” in Using LD)

2. environment variable LDEMULATION

3. compiled-in DEFAULT_EMULATION from Makefile, which comes from EMUL in
config/target.mt

35

Index

.

.stab . 16

A
all header information, object file 17
ar . 1
ar compatibility . 1
architecture . 16
architectures available . 16
archive contents . 19
archive headers . 15
archives . 1

C
c++filt . 27
collections of files . 1
compatibility, ar . 1
contents of archive . 3
creating archives . 3

D
dates in archive . 3
debug symbols . 16
debugging symbols . 9
deleting from archive . 2
demangling C++ symbols . 9, 27
disassembling object code . 15
discarding symbols . 25
dynamic relocation entries, in object file 16
dynamic symbol table entries, printing 17
dynamic symbols . 10

E
ELF object file format . 16
external symbols . 10, 11
extract from archive . 3

F
file name . 9

H
header information, all . 17

I
input file name . 9

L
ld . 7
libraries . 1
linker . 7
listings strings . 23

M
machine instructions . 15
moving in archive . 2
MRI compatibility, ar . 4

N
name duplication in archive . 3
name length . 1
nm . 9
nm compatibility . 9, 10
nm format . 9, 10

O
objdump . 15
object code format 11, 15, 22, 23
object file header . 16
object file information . 15
object file sections . 16
object formats available . 16
operations on archive . 2

P
printing from archive . 2
printing strings . 23

Q
quick append to archive . 2

R
radix for section sizes . 21
ranlib . 19
relative placement in archive . 3
relocation entries, in object file 16
removing symbols . 25
repeated names in archive . 3
replacement in archive . 2

36 GNU Binary Utilities

S
scripts, ar . 4
section headers . 16
section information . 16
section sizes . 21
sections, full contents . 16
size . 21
size display format . 21
size number format . 21
sorting symbols . 10
source file name . 9
source filenames for object files 16
stab . 16
strings . 23
strings, printing . 23
strip . 25

symbol index . 1, 19
symbol index, listing . 10
symbol table entries, printing 17
symbols . 9
symbols, discarding . 25

U
undefined symbols . 11
Unix compatibility, ar . 2
updating an archive . 3

W
writing archive index . 3

i

Table of Contents

1 ar . 1
1.1 Controlling ar on the command line . 2
1.2 Controlling ar with a script . 4

2 ld . 7

3 nm . 9

4 objcopy . 13

5 objdump . 15

6 ranlib . 19

7 size . 21

8 strings . 23

9 strip . 25

10 c++filt . 27

11 nlmconv . 29

12 Selecting the target system 31
12.1 Target Selection . 31
12.2 Architecture selection . 32
12.3 Linker emulation selection . 33

Index . 35

	1 ar
	Controlling ar on the command line
	Controlling ar with a script

	2 ld
	3 nm
	4 objcopy
	5 objdump
	6 ranlib
	7 size
	8 strings
	9 strip
	10 c++filt
	11 nlmconv
	12 Selecting the target system
	Target Selection
	Architecture selection
	Linker emulation selection

	Index

